Tag Archives: African genetics


Antimicrobial resistance (AMR) poses a major threat to global health, and Africa is no exception. As pathogens evolve, our ability to treat common infections is becoming increasingly limited.





A new study published in Scientific Reports provides valuable insight into the genetic basis of AMR in Africa, focusing on Staphylococcus aureus, one of the most widespread and clinically significant bacteria.What the Study FoundResearchers analyzed 95 whole genomes of S. aureus collected from 11 African countries. The majority of these samples were human-derived, taken from blood, pus, urine, and wound sites.





Through bioinformatic analysis, they identified 33 antimicrobial resistance genes.Key findings include:Efflux pump mechanisms were the dominant form of resistance, allowing bacteria to actively expel antibiotics.Other resistance strategies included enzyme-mediated inactivation, target alteration, protection, and replacement.West and East Africa emerged as hotspots for the distribution of resistance genes, signaling the need for stronger surveillance in these regions.





These findings highlight the urgent need to expand genomic surveillance systems across the continent. Despite covering 11 countries, the study was limited by small sample sizes and lack of data from many African nations. This gap emphasizes the importance of building local capacity for sequencing, data analysis, and sample collection.For African health systems, this research serves as a reminder that combating AMR requires both global collaboration and homegrown solutions. Without comprehensive genomic data, it will be difficult to design effective treatment guidelines, track the spread of resistance, or prepare for future outbreaks.





At MyAfroDNA, we believe genomic research should be powered by African data, African expertise, and African innovation. Our mission is to provide high-quality biospecimens and molecular testing services that enable researchers to generate the insights needed to safeguard public health.AMR is a collective challenge, but with better data and stronger collaboration, Africa can take the lead in finding solutions.









Read the full publication here: https://www.nature.com/articles/s41598-025-01398-0



A groundbreaking pair of studies published in Antiquity reveals compelling genetic evidence of West African ancestry in two individuals buried in seventh-century England. The first “West African ancestry in seventh-century England: two individuals from Kent and Dorset” was led by Professor Duncan Sayer of the University of Central Lancashire, examining the female burial from Updown, Kent.






The second, focusing on the male burial at Worth Matravers, Dorset, titled Ancient genomes reveal cosmopolitan ancestry and maternal kinship patterns at post-Roman Worth Matravers, Dorset, was led by Dr. Ceiridwen J. Edwards from the University of Huddersfield.





In both cases, mitochondrial DNA traced maternal lineage to Northern Europe, while autosomal DNA showed clear affinity with present-day Yoruba, Mende, Mandenka, and Esan groups, indicating a West African paternal grandparent.

The Updown burial included a Frankish pot and spoon suggestive of Christian or Byzantine connections, highlighting continental ties, whereas the Dorset individual was interred with local artifacts and a burial companion, underscoring full local integration.





These discoveries represent the first genetic proof of sub-Saharan African connections in Early Medieval Britain, reshaping our understanding of migration, identity, and social complexity in that era.





Read more about this discovery here.







The Moroccan Genome Project (MGP) sequenced 109 Moroccan genomes, uncovering over 27 million genetic variants, including 1.4 million new ones. This research introduces the Moroccan Major Allele Reference Genome (MMARG), providing a more accurate representation of Moroccan genetic diversity compared to global references.





By identifying unique genetic variants, MGP aims to improve precision medicine, addressing healthcare disparities for Moroccans and North Africans, especially in diseases like kidney disease, heart conditions, and diabetes.





This initiative builds on Morocco's rich genetic history and aims to create a more comprehensive genomic reference for North Africa, paving the way for better healthcare and research in the region.





Learn more here







A new study led by researchers at Uppsala University has shed light on the deep genetic history of the Fulani people, one of Africa’s largest nomadic pastoralist populations. With over 40 million individuals spread across the Sahel and West Africa, the Fulani have long fascinated historians, linguists, and geneticists. Yet, their ancestry remained largely underrepresented in genomic research until now.





Drawing on data from more than 460 participants across seven African countries, the study reveals that the Fulani's genetic profile is a unique mosaic shaped by ancient migrations and centuries of intermingling with neighboring populations. All Fulani groups studied share a common ancestry linked to the Green Sahara period (12,000–5,000 years ago), a time when now-arid regions of Africa were lush and fertile, supporting early human settlement and pastoralism.





What’s particularly compelling is how the Fulani have preserved a shared genetic signature across vast distances, despite cultural and geographic differences. These findings don’t just contribute to our understanding of African history, they also underscore the importance of including more African populations in genomic research, which has implications for medical science, anthropology, and the global understanding of human diversity.





You can read the full article on Science Daily here: https://www.sciencedaily.com/releases/2025/02/250211134303.htm